Disorder-induced double resonant Raman process in graphene
نویسندگان
چکیده
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. An analytical study is presented of the double resonant Raman scattering process in graphene, responsible for the D and D features in the Raman spectra. This work yields analytical expressions for the D and D integrated Raman intensities that explicitly show the dependencies on laser energy, defect concentration, and electronic lifetime. Good agreement is obtained between the analytical results and experimental measurements on samples with increasing defect concentrations and at various laser excitation energies. The use of Raman spectroscopy to identify the nature of defects is discussed. Comparison between the models for the edge-induced and the disorder-induced D-band intensity suggests that edges or grain boundaries can be distinguished from disorder by the different dependence of their Raman intensity on laser excitation energy. Similarly, the type of disorder can potentially be identified not only by the intensity ratio I D /I D , but also by its laser energy dependence. Also discussed is a quantitative analysis of quantum interference effects of the graphene wave functions, which determine the most important phonon wave vectors and scattering processes responsible for the D and D bands.
منابع مشابه
In-situ synthesis and characterization of reduced graphene oxide –Ag nanocomposites
Reduced graphene oxide(rGO)–silver(Ag) nanocomposites have been prepared by using solution based facile one-pot synthesis process. The reaction process involves high-temperature liquid-phase exfoliation of graphite oxide and silver acetate in presence of N-N’dimethylformamide (DMF) solvent, resulting in simultaneous formation of rGO as well as Ag nanoparticles. Different nanocomposites have bee...
متن کاملRaman spectrum of graphene and graphene layers.
Graphene is the two-dimensional building block for carbon allotropes of every other dimensionality. We show that its electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers. The D peak second order changes in shape, width, and position for an increasing number of layers, reflecting the change in the electron bands via a double resonant Raman process...
متن کاملSpatially resolved Raman spectroscopy of single- and few-layer graphene.
We present Raman spectroscopy measurements on single- and few-layer graphene flakes. By using a scanning confocal approach, we collect spectral data with spatial resolution, which allows us to directly compare Raman images with scanning force micrographs. Single-layer graphene can be distinguished from double- and few-layer by the width of the D' line: the single peak for single-layer graphene ...
متن کاملRaman spectroscopy of graphite.
We present a review of the Raman spectra of graphite from an experimental and theoretical point of view. The disorder-induced Raman bands in this material have been a puzzling Raman problem for almost 30 years. Double-resonant Raman scattering explains their origin as well as the excitation-energy dependence, the overtone spectrum and the difference between Stokes and anti-Stokes scattering. We...
متن کاملDouble-resonant Raman scattering in graphite: Interference effects, selection rules, and phonon dispersion
We present a comprehensive analysis of double-resonant Raman scattering in graphite and derive an analytical expression for the Raman cross section of the D mode in one dimension. The extension to two dimensions does not change the double-resonant phonon wave vectors. In the full integration of the Raman cross section, the contributions by phonons from exactly the K point cancel due to destruct...
متن کامل